
LECTURE 20

REAL TIME DISTRIBUTED

SYSTEM

Distributed Operating System

REAL-TIME DISTRIBUTED

SYSTEMS
 What is a real-time system?

 Real-time programs interact with the

external world in a way that involves

time. When a stimulus appears, the

system must respond to it in a certain

way and before a certain deadline.

E.g. automated factories, telephone

switches, robots, automatic stock

trading system.

Distributed Operating System

Distributed real-time systems

structure

Dev

C

Dev

C C

Dev

C

Dev

C

External device

Sensor

Computer

Actuator

Distributed Operating System

Stimulus

 An external device generates a stimulus for

the computer, which must perform certain

actions before a deadline.
1. Periodic: a stimulus occurring regularly every T seconds, such

as a computer in a TV set or VCR getting a new frame every

1/60 of a second.

2. Aperiodic: stimulus that are recurrent, but not regular, as in the

arrival of an aircraft in an air traffic controller’s air space.

3. Sporadic: stimulus that are unexpected, such as a device

overheating.

Distributed Operating System

Two types of RTS

 Soft real-time systems: missing an

occasional deadline is all right.

 Hard real-time systems: even a single

missed deadline in a hard real-time

system is unacceptable, as this might

lead to loss of life or an environmental

catastrophe.

Distributed Operating System

Design issues

 Clock Synchronization - Keep the

clocks in synchrony is a key issue.

 Event-Triggered versus Time-

Triggered Systems

 Predictability

 Fault Tolerance

 Language Support

Distributed Operating System

Event-triggered real-time

system
 when a significant event in the outside

world happens, it is detected by some
sensor, which then causes the attached
CPU to get an interrupt. Event-triggered
systems are thus interrupt driven. Most real-
time systems work this way.

 Disadvantage: they can fail under
conditions of heavy load, that is, when
many events are happening at once. This
event shower may overwhelm the
computing system and bring it down,
potentially causing problems seriously.

Distributed Operating System

Time-triggered real-time

system
 in this kind of system, a clock interrupt

occurs every T milliseconds. At each clock

tick sensors are sampled and actuators are

driven. No interrupts occur other than clock

ticks.

 T must be chosen carefully. If it too small,

too many clock interrupts. If it is too large,

serious events may not be noticed until it is

too late.

Distributed Operating System

An example to show the

difference between the two
 Consider an elevator controller in a 100-

story building. Suppose that the elevator is
sitting on the 60th floor. If someone pushes
the call button on the first floor, and then
someone else pushes the call button on the
100th floor. In an event-triggered system,
the elevator will go down to first floor and
then to 100th floor. But in a time-triggered
system, if both calls fall within one sampling
period, the controller will have to make a
decision whether to go up or go down, for
example, using the nearest-customer-first
rule.

 Distributed Operating System

Cont..

 In summary, event-triggered designs

give faster response at low load but

more overhead and chance of failure

at high load. Time-trigger designs

have the opposite properties and are

furthermore only suitable in a relatively

static environment in which a great

deal is known about system behavior

in advance.

Distributed Operating System

Predictability

 One of the most important properties

of any real-time system is that its

behavior be predictable. Ideally, it

should be clear at design time that the

system can meet all of its deadlines,

even at peak load. It is known when

event E is detected, the order of

processes running and the worst-case

behavior of these processes.

Distributed Operating System

Fault Tolerance

 Many real-time systems control safety-critical
devices in vehicles, hospitals, and power plants, so
fault tolerance is frequently an issue.

 Primary-backup schemes are less popular because
deadlines may be missed during cutover after the
primary fails.

 In a safety-critical system, it is especially important
that the system be able to handle the worst-case
scenario. It is not enough to say that the probability
of three components failing at once is so low that it
can be ignored. Fault-tolerant real-time systems
must be able to cope with the maximum number of
faults and the maximum load at the same time.

Distributed Operating System

Language Support

 In such a language, it should be easy to express the work as
a collection of short tasks that can be scheduled
independently.

 The language should be designed so that the maximum
execution time of every task can be computed at compile
time. This requirement means that the language cannot
support general while loops and recursions.

 The language needs a way to deal with time itself.

 The language should have a way to express minimum and
maximum delays.

 There should be a way to express what to do if an expected
event does not occur within a certain interval.

 Because periodic events play an important role, it would be
useful to have a statement of the form: every (25 msec){…}
that causes the statements within the curly brackets to be
executed every 25 msec.

Distributed Operating System

Real-Time Communication

 Cannot use Ethernet because it is not predictable.

 Token ring LAN is predictable. Bounded by kn byte

times. K is the machine number. N is a n-byte

message .

 An alternative to a token ring is the TDMA (Time

Division Multiple Access) protocol. Here traffic is

organized in fixed-size frames, each of which

contains n slots. Each slot is assigned to one

processor, which may use it to transmit a packet

when its time comes. In this way collisions are

avoided, the delay is bounded, and each processor

gets a guaranteed fraction of the bandwidth.

Distributed Operating System

Real-Time Scheduling

 Hard real time versus soft real time

 Preemptive versus nonpreemptive

scheduling

 Dynamic versus static

 Centralized versus decentralized

Distributed Operating System

Dynamic Scheduling

 1. Rate monotonic algorithm:

 It works like this: in advance, each task is

assigned a priority equal to its execution

frequency. For example, a task runs every

20 msec is assigned priority 50 and a task

run every 100 msec is assigned priority 10.

At run time, the scheduler always selects

the highest priority task to run, preempting

the current task if need be.

Distributed Operating System

Cont..

 2.Earliest deadline first algorithm:

 Whenever an event is detected, the

scheduler adds it to the list of waiting

tasks. This list is always keep sorted

by deadline, closest deadline first.

Distributed Operating System

Cont..

 3.Least laxity algorithm:

 this algorithm first computes for each

task the amount of time it has to

spare, called the laxity. For a task that

must finish in 200 msec but has

another 150 msec to run, the laxity is

50 msec. This algorithm chooses the

task with the least laxity, that is, the

one with the least breathing room.

Distributed Operating System

Static Scheduling

 The goal is to find an assignment of

tasks to processors and for each

processor, a static schedule giving the

order in which the tasks are to be run.

Distributed Operating System

A comparison of Dynamic

versus Static Scheduling
 Static is good for time-triggered design.

 1. It must be carefully planned in
advance, with considerable effort going into
choosing the various parameters.

 2. In a hard real-time system, wasting
resources is often the price that must be
paid to guarantee that all deadlines will be
met.

 3. An optimal or nearly optimal schedule
can be derived in advance.

Distributed Operating System

Cont..

 Dynamic is good for event-triggered
design.

 1. It does not require as much
advance work, since scheduling
decisions are made on-the-fly, during
execution.

 2. It can make better use of
resources than static scheduling.

 3. No time to find the best
schedule.

Distributed Operating System

ASSIGNMENT

 Q: What are the advantages of Real

time distributed system.

Distributed Operating System

